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Abstract
An iterative algorithm for the multiuser detection problem that arises in code
division multiple access (CDMA) systems is developed on the basis of Pearl’s
belief propagation (BP). We show that the BP-based algorithm exhibits nearly
optimal performance in a practical time scale by utilizing the central limit
theorem and self-averaging property appropriately, whereas direct application
of BP to the detection problem is computationally difficult and far from
practical. We further present close relationships of the proposed algorithm
to the Thouless–Anderson–Palmer approach and replica analysis known in
spin-glass research.

PACS numbers: 89.70.+c, 75.10.Nr, 64.60.Cn

1. Introduction

Code division multiple access (CDMA) is a core technology of today’s wireless communication
employing data transmission between multiple terminals and a single base station [1].
Although this technology is already in use, a strong demand still exists for improvements to
respond to the ever-increasing use of mobile communication devices such as cellular phones
and wireless LANs.

In the general scenario of a CDMA system, the binary signals of multiple users are
modulated by spreading codes assigned to each user, and these modulated sequences are
transmitted to a base station. The base station receives a mixture of the modulated sequences
and possible noise. After that, a detector at the base station extracts the original binary signals
from the received signals using knowledge of the users’ spreading codes.

Multiuser detection is a scheme used in the detection stage [2]. By simultaneously
detecting multiple user signals following the Bayesian framework, this scheme suppresses
mutual interference and can provide optimal detection performance. However, as following
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the Bayesian approach exactly is computationally difficult, the development of approximation
algorithms is necessary for practical implementation.

The purpose of this paper is to answer such a demand. More specifically, we develop and
analyse a practical multiuser detection algorithm using statistical mechanics. The algorithm is
developed on the basis of Pearl’s belief propagation (BP) [3] which is defined over graphically
expressed statistical models. It is known that BP can be carried out at low computational cost
if a given graph is sparse. Unfortunately, the graph for the multiuser detection problem is
dense, which implies that the actual use of BP is still highly time consuming. However, we
show that one can derive an efficient algorithm of complexity proportional to the square of the
number of users starting from BP and appropriately introducing the central limit theorem and
self-averaging property, which are useful notions from statistical mechanics.

This paper is organized as follows. In the next section, the multiuser detection problem is
formulated in the Bayesian framework. In section 3, a graphical expression is introduced. For
the given graph, we offer a BP algorithm, which turns out to be time consuming. In section 4,
we derive a practical algorithm on the basis of the offered BP. Examining properties of the fixed
point, it is shown that the derived BP-based algorithm provides a solution for the Thouless–
Anderson–Palmer (TAP) mean field approach [4]. In section 5, we show that the macroscopic
trajectory of this algorithm can be captured well by iterative updates of distributions of certain
auxiliary fields, the stationary state of which turns out to reproduce the replica symmetric
(RS) solution of the equilibrium state [5]. In addition, the microscopic instability condition of
the fixed point turns out to coincide with the de Almeida–Thouless (AT) condition [6] for the
RS solution. A comparison with other detection schemes is also presented to demonstrate the
practical efficacy of the derived algorithm. The final section is devoted to a summary.

2. Multiuser detection

We focus on a K-user direct-sequence binary phase shift-keying (DS/BPSK) CDMA system
using random binary spreading codes of the spreading factor N with unit energy over an
additive white Gaussian noise (AWGN) channel. For simplicity, we assume that the signal
powers are completely controlled to unit energy, but the extension to the case of distributed
power is straightforward. In addition, we assume that chip timing as well as symbol timing
are perfectly synchronized among users. Under these assumptions [5], the received signal can
be expressed as

yµ = 1√
N

K∑
k=1

sµkbk + σ0nµ (1)

where µ ∈ {1, 2, . . . , N} and k ∈ {1, 2, . . . , K} are indices of samples and users, respectively.
sµk ∈ {−1, 1} is the spreading code with unit energy independently generated from the
identical unbiased distribution P(sµk = +1) = P(sµk = −1) = 1/2. bk is the bit signal of
user k, nµ is a Gaussian white noise sample with zero mean and unit variance, and σ0 is the
standard deviation of AWGN. Using these normalizations, the signal to noise ratio is defined
as SNR = β

/(
2σ 2

0

)
where β = K/N .1 In the following, we assume a situation where both

N and K are large, keeping β finite, which may not be far from practicality since a relatively
large spreading factor up to N = 256 can be adopted in one of the third generation cellular
phone systems ‘cdma2000’ [7].

1 Although pattern ratio α̃ = N/K = β−1 and inverse temperature β̃ = βσ−2 are usually employed for
characterising systems in statistical mechanics, we will follow notation frequently used in CDMA research.
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The goal of multiuser detection is to simultaneously detect bit signals b1, b2, . . . , bK after
receiving the signals y1, y2, . . . , yN . The Bayesian approach offers a useful framework for
this. Assuming that the bit signals are independently generated from the unbiased distribution,
the posterior distribution from the received signals is given as

P(b|y) =
∏N

µ=1 P(yµ|b)∑
b

∏N
µ=1 P(yµ|b)

(2)

where

P(yµ|b) = 1√
2πσ 2

exp

[
− 1

2σ 2
(yµ − �µ)2

]
(3)

and �µ ≡ 1√
N

∑K
k=1 sµkbk . Here, the detector’s noise parameter σ is introduced for the case

when the true value σ0 is not known.
Following the Bayesian framework, one can systematically derive the optimal detection

strategy from the posterior distribution (2) for various cost functions assuming the posterior
is correct [8, 9]. In particular, it can be shown that the bit error rate (BER), which is the cost
function that is most frequently argued in CDMA research and which we will focus on in this
paper, which is minimized by the maximizer of the posterior marginal (MPM) detector [5]

b̂k = argmax
bk∈{+1,−1}

∑
bl �=k

P (b|y). (4)

3. Graphical representation and belief propagation

Unfortunately, the necessary cost for exactly computing the MPM detector increases
exponentially with respect to the number of users K in the current system, which implies
that one has to resort to an approximation in practice. The belief propagation (BP), or
the sum–product algorithm, is known as one of the most promising approaches to such tasks.
Recent research has revealed that this algorithm is closely related to the transfer matrix method
and the Bethe approximation [10, 11], which are standard techniques in statistical mechanics,
and exhibits excellent performance when a given statistical model is expressed by a sparse
graph [12–14]. However, the properties of BP in dense graphs have not yet been sufficiently
studied. In the following, we show that BP can also serve as an excellent approximation
algorithm for dense graphs by appropriately utilizing the randomness of the underlying model,
and apply it to the current CDMA problem.

To introduce this algorithm to the current system, let us graphically denote the received
and bit signals by two kinds of nodes, and connect them by an edge when they are related.
The conditional probability of yµ (3) depends on all b1, b2, . . . , bk , implying that the posterior
distribution (2) can be expressed as a (dense) complete bipartite graph, as shown in figure 1.

The BP can then be defined as an algorithm that passes messages between the two kinds
of nodes through edges as

P t+1(yµ|bk, {yν �=µ}) ∝ α̂t+1
µk

∑
bl �=k

P (yµ|b)
∏
l �=k

P t (bl|{yν �=µ}) (5)

P t(bk|{yν �=µ}) = αt
µk

∏
ν �=µ

P t (yν |bk, {yσ �=ν}) (6)

where t = 1, 2, . . . is an index for counting the number of updates, and α̂t
µk and

αt
µk are constants for normalization constraints

∑
bk=±1 P t(yµ|bk, {yν �=µ}) = 1 and∑

bk=±1 P t(bk|{yν �=µ}) = 1, respectively [3, 12]. The marginalized posterior at the tth update
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^

Figure 1. Graphical representation of the CDMA multiuser detection problem. Each edge
corresponds to a component of spreading codes sµk .

is given by P t(yµ|bk, {yν �=µ}) as P t(bk|y) = αk

∏N
µ=1 P t(yµ|bk, {yν �=µ}), where αk is a

normalization constant.
As bk is a binary variable, one can parametrize the above functions as P t(yµ|bk,

{yν �=µ}) ∝ (
1 + m̂t

µkbk

)/
2, P t(bk|{yν �=µ}) = (

1 + mt
µkbk

)/
2 and P t(bk|y) = (

1 + mt
kbk

)/
2

without loss of generality, which simplifies expressions (5) and (6) to

m̂t+1
µk =

∑
b bkP (yµ|b)

∏
l �=k

( 1+mt
µlbl

2

)
∑

b P(yµ|b)
∏

l �=k

( 1+mt
µlbl

2

) (7)

mt
µk = tanh


∑

ν �=µ

tanh−1 m̂t
νk


 . (8)

Employing these variables, the approximated posterior average of bk at the tth update can be
computed as mt

k = tanh
(∑N

µ=1 tanh−1 m̂t
µk

)
. Because each received signal yµ is connected to

every bit signal bk , evaluating equation (7), unfortunately, produces a computational explosion
when K is large, so that performing BP exactly is hopeless in the current system.

4. Propagating beliefs in a large complete bipartite graph

However, by appropriately applying the central limit theorem and the self-averaging property,
which are useful notions from statistical-mechanical analysis [15], it becomes possible to
approximately carry out the belief updates (7) and (8) in a practical time scale [10, 16, 17].

4.1. Gaussian approximation

Since sµkbk/
√

N is small for large N, we can expand the conditional probability as

P(yµ|b) � 1√
2πσ 2

exp

[
− (yµ − �µk)

2

2σ 2
+

sµk(yµ − �µk)√
Nσ 2

bk

]

� 1√
2πσ 2

exp

[
− (yµ − �µk)

2

2σ 2

](
1 +

sµk(yµ − �µk)√
Nσ 2

bk

)
(9)

where �µk ≡ ∑
l �=k sµlbl/

√
N in equation (7). As the spreading codes are generated

independently, sµl and mt
µl are statistically uncorrelated because mt

µl is regarded as the
posterior average of bl in a system from which yµ and sµk=1,...,K are excluded. Therefore, the
correlation between sµl and bl can be considered as sufficiently weak when bl is generated
from P t(bl|{yν �=µ}) = (

1 + mt
µlbl

)/
2 for typical realizations of codes and signals. This,

in conjunction with the central limit theorem, implies that �µk ≡ ∑
l �=k sµlbl/

√
N obeys
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a Gaussian distribution N
(〈
�t

µk

〉
µ
, β

(
1 − Qt

µk

))
, where

〈
�t

µk

〉
µ

≡ ∑
l �=k sµlm

t
µl

/√
N and

Qt
µk ≡ (1/K)

∑
l �=k

(
mt

µl

)2
. Furthermore, the self-averaging property implies that the

macroscopic variable Qt
µk typically converges to a certain value independently of each

realization of codes and signals for large K and N, and is highly likely to be well approximated
by Qt ≡ (1/K)

∑K
k=1

(
mt

l

)2
. Substituting these, one can write equation (7) as

m̂t+1
µk = At

(
yµsµ√

N
− β

(
Pµ − I

K

)
mt

µ

)
k

(10)

where sµ ≡ (sµk),m
t
µ ≡ (

mt
µk

)
and At ≡ (σ 2 + β(1 − Qt))−1. Pµ ≡ (1/K)(sµksµl) and

I ≡ (δkl) are the projection and identity matrices, and (· · ·)k denotes the kth component of
the vector · · ·. Equation (10) can be evaluated in O(K) computations per pair (µk), which
implies that a total of O(NK2) computations are required per update.

4.2. Further reduction of computational cost

Computational cost can be further reduced to O(K2) when N is large by employing
equation (8). As m̂t

µk typically scales as O(N−1/2), equation (8) can be expanded as

mt
µk � mt

k − (
∂mk

/
∂m̂t

µk

)
m̂t

µk = mt
k − (

1 − (
mt

k

)2)
m̂t

µk . Substituting this into equation (10)
provides a recursive equation with respect to m̂t

µ ≡ (
m̂t

µk

)
as

m̂t+1
µ = At yµsµ√

N
− βAt

(
Pµ − I

K

)
mt + βAtPµCtm̂t

µ (11)

where Ct ≡ ((
1 − (

mt
k

)2)
δkl

)
. Using the relationships PµCtsµ = (1 − Qt)sµ and

PµCtPµ = (1 − Qt)Pµ and omitting negligible terms, the solution of equation (11) can
be expressed as

m̂t+1
µ = Rt yµsµ√

N
− U t

µ +
1

K
βAtmt (12)

where Rt and U t are obtained from recursive equations

Rt = At + Atβ(1 − Qt)Rt−1 (13)

U t
µ = AtβPµmt + Atβ(1 − Qt)U t−1

µ . (14)

Since m̂µk typically scales as O(N−1/2), the posterior average can be expressed as mt
k =

tanh
(∑N

µ=1 tanh−1 m̂t
µk

) � tanh
(∑N

µ=1 m̂t
µk

)
. This implies that the belief updates (5) and (6)

are finally summarized as

ht+1 = Rth0 − U t + Atmt (15)

U t = AtWmt + Atβ(1 − Qt)U t−1 (16)

and equation (13), where mt
k = tanh

(
ht

k

)
, h0 ≡ (

h0
k

) ≡ (∑N
µ=1 yµsµk

/√
N

)
, ht ≡ (

ht
k

)
and

W ≡ (Wkl) ≡ (∑N
µ=1 sµksµl/N

) = ∑N
µ=1 βPµ. From the posterior average mt

k , the MPM

detector at the tth update is evaluated as b̂t
k = sign

(
mt

k

)
where sign(x) ≡ 1 (x � 0) and −1

(otherwise). Two points are worth noting. Firstly, the most time-consuming operation in
equations (13), (15) and (16) is Wmt , which requires a total of O(K2) computations. This
implies that the computational cost for performing the current scheme is similar to that of
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conventional multistage detection [18]

b̂t+1
k = sign


h0

k −
∑
l �=k

Wklb̂
t
l


 . (17)

Secondly, as the fixed point condition, coupled nonlinear equations

mk = tanh


σ−2


h0

k −
∑
l �=k

Wklml


 − β(1 − Q)mk

σ 2(σ 2 + β(1 − Q))


 (18)

are obtained from our update scheme, where Q = (1/K)
∑k

k=1 m2
l . This is identical to the

TAP equation for the current system developed in statistical mechanics [4, 19]. However, it
should be emphasized here that the naive iteration of equation (18) does not serve as a useful
detection algorithm, as finding the fixed point from a practically reasonable initial state turns
out to be difficult. This will be illustrated by numerical experiments in the next section.

5. Macroscopic analysis

5.1. Density evolution and the replica symmetric solution

Density evolution is a framework for analysing the dynamical behaviour of BP pursuing
a macroscopic distribution of messages [20, 21]. In the current system, this analysis is
considerably simplified since the distribution of the gauged field bkh

t
µk , where bk is the kth

user’s true binary signal and ht
µk ≡ tanh−1 mt

µk = ∑
ν �=µ tanh−1 m̂t

νk � ∑
ν �=µ m̂t

νk , is likely
to be well approximated by a Gaussian as a result of the central limit theorem.

Let us assume that bkh
t
µk is independently sampled from a Gaussian distribution with

an average and a variance Et and F t , respectively. Notice that we assumed that Et and
F t are independent of index µ due to the self-averaging property. The self-averaging
property also leads us to expect that macroscopic variables

∑K
k=1 bkm

t
µk

/
K ≡ Mt

µ and∑K
k=1

(
bkm

t
µk

)2/
K = ∑K

k=1

(
mt

µk

)2/
K = Qt

µ are independent of µ as Mt
µ � Mt ≡∑K

k=1 bkm
t
k

/
K and Qt

µ � Qt . These indicate that macroscopic variables Mt and Qt can
be evaluated as

Mt =
∫

Dz tanh
(√

F tz + Et
)

Qt =
∫

Dz tanh2
(√

F tz + Et
)

(19)

where Dz ≡ dz exp[−z2/2]/
√

2π . Since the MPM detector is given as b̂t
k = sign

(
mt

k

) �
sign

(
mt

µk

) = sign
(
ht

µk

)
, BER is given by P t

b = (1/K)
∑K

k=1 (1 − sign
(
bkm

t
k

))/
2 �

(1/K)
∑K

k=1 (1 − sign
(
bkh

t
µk

))/
2 = ∫ −Et/

√
F t

−∞ Dz.

On the other hand, as bkh
t
µk is independently sampled, sµ · mt

µ

/√
N in the right hand

side of equation (10) becomes an uncorrelated Gaussian random number with respect to index
µ due to the central limit theorem, since ht

µk is composed of m̂t
ν(�=µ)k , which has a sufficiently

small correlation with the randomly generated code sµ. This, in conjunction with statistical
uniformness with respect to indices µ and k, implies that the average and variance at the
(t + 1)th update are given by Et+1 = ∑N

µ=1(1/K)
∑K

k=1 bkm̂
t+1
µk = (1/K)

∑N
µ=1 b · m̂t

µ and

F t+1 = ∑N
µ=1

[
(1/K)

∑K
k=1

(
bkm̂

t
µk

)2 − (1/K2)
(∑K

k=1 bkm̂
t
µk

)2] � (1/K)
∑N

µ=1 m̂t
µ · m̂t

µ,
respectively. Evaluating these using equations (1) and (10), Et+1 and F t+1 become

Et+1 = 1

σ 2 + β(1 − Qt)
F t+1 = β(1 − 2Mt + Qt) + σ 2

0[
σ 2 + β(1 − Qt)

]2 . (20)

Equations (19) and (20) express the density evolution of the current algorithm.
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It should be noted that the expression obtained for the density evolution directly links
the proposed algorithm to the replica analysis of the equilibrium state presented in [5] since
equations (19) and (20) can be regarded as the naive iteration dynamics of the saddle point
equations provided by the replica method under the replica symmetric (RS) ansatz [22].
This implies that our algorithm can practically calculate the MPM detector (4) in O(K2)

computations, obtaining the fixed point solution when K is large as replica analysis is likely
to give an exact evaluation for K → ∞.

5.2. Microscopic stability and the de Almeida–Thouless condition

Although equations (19) and (20) indicate that the distribution of the gauged field bkh
t
µk

converges to a stationary state provided by the RS solution, this does not necessarily imply the
convergence of the microscopic variables, such as ht

µk

(
or mt

µk

)
and mt

k . To examine whether
BP dynamics converge to a certain solution microscopically, we perform stability analysis.

For this, the update of ht
µk = ∑

ν �=µ tanh−1 m̂t
νk � ∑

ν �=µ m̂t
νk is linearized around a fixed

point solution hµk using equations (8) and (10), yielding

δht+1
µk = − 1

σ 2 + β(1 − Q)

∑
ν �=µ

∑
j �=k

sνksνj

N

(
1 − m2

νj

)
δht

νj (21)

where Q and mνj are the fixed point values of Qt and mt
νj , respectively. The following two

remarks are useful for analysing the linear stability. Firstly, since spreading codes sν are
generated randomly, the summation on the right-hand side gives a Gaussian random number
due to the central limit theorem, as the δht

νj are uncorrelated. Secondly, as both indices µ and
k are excluded from the summation on the right-hand side, correlations of δht+1

µk with respect
to indices µ, k and t become negligible. This makes it possible to analyse the stability of the
fixed point by examining whether the first and second moments of the fluctuations δht

µk grow
or not with each update (21).

Since the average of sνk is zero, the first moment becomes negligible after a single
application of equation (21) when K and N are large. However, squaring equation (21) to
examine the time evolution of the second moment yields a nontrivial equation,

(
δht+1

µk

)2 � 1

[σ 2 + β(1 − Q)]2


∑

ν �=µ

∑
j �=k

sνksνj

N

(
1 − m2

νj

)
δht

νj




2

= β

N [σ 2 + β(1 − Q)]2

∑
ν �=µ


 1

K

∑
j �=k

(
1 − m2

νj

)2(
δht

νj

)2




� β

N [σ 2 + β(1 − Q)]2

∑
ν �=µ


 1

K

∑
j �=k

(
1 − m2

νj

)2





 1

K

∑
j �=k

(
δht

νj

)2


 (22)

where (· · ·) denotes average over the spreading codes sνj and we replaced a sample average

of products 1
K

∑
j �=k

(
1 − m2

νj

)2(
δht

νj

)2
with a product of sample averages

(
1
K

∑
j �=k

(
1 −

m2
νj

)2)( 1
K

∑
j �=k

(
δht

νj

)2)
, which is valid when K is large since mνj and δht

νj are uncorrelated.
Further, it can be expected that due to the self-averaging property, the macroscopic variable
1
K

∑
j �=k

(
1 − m2

νj

)2
can be expressed as

1

K

∑
j �=k

(
1 − m2

νj

)2 �
∫

Dz(1 − tanh2(
√

Fz + E))2 (23)
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Figure 2. Time evolution of BER for the proposed algorithm (PA: �), conventional multistage
detection (MSD: ×), naive iteration of the TAP equation (TAP: +) and density evolution (DE: lines)
in the case of N = 2000, β = 0.5 and SNR = 4, 9 (data for TAP are shown only for SNR = 9).
Each marker represents the averaged BER at the tth update evaluated from 10 000 experiments.
In the experiments, the correct noise parameter σ = σ0 was used and the initial condition for
t = 0 was set as m0

k = tanh(h0
k/σ

2) for PA and TAP, and m0
k = sign(h0

k) for MSD. Values of
macroscopic variables induced by PA-TAP initial conditions were provided for DE. PA exhibits
the fastest convergence and excellent consistency with DE.

independently of ν, where F and E are the fixed point values of F t and Et , and 1
K

∑
j �=k

(
δht

νj

)2

coincides with the second moment of the fluctuation which does not depend on ν for large K
and N. This means that the second moment is enlarged through the belief update and, therefore,
the fixed point solution becomes unstable if

β

[σ 2 + β(1 − Q)]2

∫
Dz(1 − tanh2(

√
Fz + E))2 > 1. (24)

It should be emphasized here that this is nothing but the de Almeida–Thouless (AT) condition
for the RS solution of the current system [5, 6]. Similar correspondence between the
microscopic stability of BP and the AT condition for the RS solution has also been pointed
out in a family of spin-glass models [23]. Although it is known that several non-replica-
based approaches to the equilibrium state also provide certain critical conditions which are
equivalent to that of AT [15, 24], this, as well as the link between the density evolution and the
RS solution, might offer a nontrivial bridge between a dynamical analysis of BP and a fully
static theory on the basis of the replica method in spin-glass research.

5.3. Method comparison

To validate the results obtained so far, we performed numerical experiments in systems of
N = 2000. Figure 2 shows the time evolution of BER in the case of β = K/N = 0.5
obtained from 10 000 experiments for the proposed algorithm (equations (13), (15) and (16):
PA), conventional multistage detection (equation (17): MSD), iteration of the TAP equation
(equation (18): TAP) and density evolution (equations (19) and (20): DE). In the experiments,
the noise parameter σ was set to the correct value σ0.

Firstly, it is clear that PA converges to the fixed point considerably faster than MSD,
which is a highly desirable property in practical use. In [21], it is shown that self-reaction
from the past states works to disturb the convergence in the conventional multistage detection.
On the other hand, such reaction is appropriately cancelled at each update in the proposed
algorithm by the last terms on the right-hand side of equations (15) and (16), which may
serve as an intuitive explanation for the superiority of PA. Secondly, PA and DE exhibit
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Figure 3. Influence of the noise parameter σ on the proposed algorithm. 10 000 experiments were
performed to evaluate BER in the case of N = 2000, β = 0.25 and σ0 = 1. Markers indicate
experimentally obtained BER for σ = σ0 = 1 (the correct choice: �) and for σ = 1/3 (a smaller
value: ∇), and lines represent trajectories of the density evolution for each case. These data show
that performance becomes optimal when the true parameter σ = σ0 is used and errors in this
parameter choice degrade the detection performance. Although BER seems to converge in both
cases, this does not necessarily mean that the algorithm is microscopically attracted to a certain
solution. To probe such microscopic convergence, the time evolution of the squared difference
of the posterior averages between successive times Dt ≡ (1/K)

∑K
k=1(m

t
k − mt−1

k )2 is plotted in
the inset. It is shown that Dt for σ = 1/3 (∇) does not vanish and converges to a finite value,
indicating the microscopic instability of a fixed point, while rapid decay to zero is observed for
σ = σ0 = 1 (�). In the numerical data, residual motion for σ = 1/3 is not simple but seems
chaotic. The left-hand side of equation (24) becomes 1.404 (>1) and 0.165 (<1) for σ = 1/3 and
σ = σ0 = 1, respectively, which is consistent with the behaviour observed in experiments.

excellent consistency as we speculated, which implies that application of the central limit
theorem and the self-averaging property in deriving equations (19) and (20) is fully validated.
Finally, TAP does not serve as a useful detection algorithm. This is because iteration of
equation (18) does not correctly approximate BP and, therefore, subtraction of a diagonal term
β(1−Q)mk/σ

2(σ 2 +β(1−Q)) does not provide appropriate cancellation of the self-reaction
in the transient dynamics, whereas it does provide the correct fixed point condition in the
stationary state.

Figure 3 shows the influence of noise parameter σ on PA. This indicates that discrepancies
between the detector’s noise parameter σ and the correct value σ0 degrade the detection
performance. It has been shown that performance of inference is generally optimized by
the correct parameter choice, which corresponds to the Nishimori condition [25] known in
spin-glass research, when exact evaluation of the MPM estimator is possible [8, 9]. The
current result, in conjunction with the previously mentioned relationship between the density
evolution and replica analysis, implies that the optimality of the Nishimori condition also
holds for the proposed approximation algorithm.

The inset shows that the microscopic stability of the fixed point can be broken due to
condition (24) when σ is sufficiently smaller than σ0, even though macroscopic trajectory
seems to converge. Such microscopic instability does not occur for σ > σ0, whereas the
performance is also degraded due to mismatch of the parameter. This implies that it may not
be easy to adjust σ to σ0 only by monitoring the microscopic behaviour of the algorithm.

In the regime of instability, nontrivial chaotic motion was observed numerically even
when control parameters were set close to the critical values. This may be due to highly
degenerated eigenvalues of the interaction matrix W for which many modes of fluctuations
would become unstable simultaneously at the critical condition.
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6. Summary

In summary, we have developed a novel algorithm for CDMA multiuser detection from belief
propagation by appropriately applying the central limit theorem and self-averaging property.
The new algorithm exhibits considerably faster convergence than conventional multistage
detection without increasing computational cost significantly, and is likely to provide a nearly
optimal MPM detector when the spreading factor N is large. We have also clarified the
relationship between the obtained algorithm and the existing equilibrium analysis presented
in [5] using the density evolution scheme. Finally, we have shown a nontrivial link between
microscopic stability of BP dynamics and the AT condition of replica analysis.

After completing this work, another detection algorithm of O(K2) computational cost
was proposed by other authors [26]. The algorithm is obtained by subtracting self-reaction
terms from conventional multistage detection and can be carried out at about half the cost by
a serial computer. However, the current algorithm still exhibits faster convergence in terms
of necessary updates and, therefore, would be preferable when implemented in an electrical
circuit.

Extension of the current scheme to cases of nonrandom code generation and small system
size [27] is under way. Besides this, performance evaluation for data encoded by error-
correcting codes is a challenging and practically important future work.
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